www.isi.ac

ISI Journals

(International Scientific Indexing)

(Institute for Scientific Information)

Increasing substantial productivity in additive manufacturing procedures by expending machine learning method

Open PDF in Browser
International Journal of Mechanical Engineering and Science Study, 2023

Autour(s)

  • Keypi Jackson, Joe Ewani, Vivian Lotisa, Ibrina Browndi

Abstract

Additive Manufacturing (AM) has become ubiquitous in manufacturing three-dimensional objects through 3D printing. Traditional analytical models are still widely utilized for low – cost 3D Printing, which is deficient in terms of process, structure, property and performance relationship for AM. This paper focuses on the introduction of a new infill pattern – the lattice infill to increase material efficiency of 3D prints, coupled with Machine Learning (ML) technique to address geometric corrections in modelling the shape deviations of AM. Encompassed by ML algorithms, the neural network (NN) is used to handle the large dataset of the system. The 3D coordinates of the proposed infill pattern are extracted as the input of the NN model. The optimization technique of scaled conjugate gradient (SCG) is the algorithm used to train the feed forward ANN, and sigmoidal function was used as the activation type for output neurons. There is 0.00776625 cross-entropy (CE) performance and 98.8% accuracy during network training. The trained network is implemented to STL file for geometric corrections of the lattice infill pattern then made in a 3D printer slicing software. Conventional designs such as the cubic and grid infill pattern were also made for comparison. Engineering simulation software were used to simulate all three infill patterns, to measure approximate product weight, stress performance and displacement, given that there is an external force applied. Comparisons showed that the new infill pattern is more efficient than conventional infill patterns saving material up to 61.3%. Essentially increasing the amount of prints produced per spool by 2.5 times. The structure of the proposed design can also resist up to 1.6kN of compressive load prior to breaking.

About ISI Journals:

www.isi.ac is a comprehensive and advanced platform for researchers and scientific authors, providing access to thousands of reputable ISI Journals and precise citation data. The platform enables professional analysis of key metrics such as Impact Factor, H-index, Journal Ranking, and Citation Analysis, supporting the evaluation of Research Impact and Research Visibility. With Journal Citation Reports and other Scholarly Metrics, it guides users in journal selection, optimizing publication strategies, and informed research decisions. The Publishing & Submission process includes Peer Review, adherence to Author Guidelines, Manuscript Preparation, and Publication Timeline tracking, with flexible Open Access and Close Access options. Standards of Research Quality & Ethics, including Plagiarism Check, Editorial Board oversight, Research Methodology, and Literature Review support, along with Digital Object Identifier (DOI) assignment, ensure high-quality, traceable publications. Researchers can maximize their scientific impact through Research Citation management, Research Collaboration, and Research Funding opportunities. By publishing in journals affiliated with www.isi.ac and its parallel platform www.isi.report, authors gain higher chances of Indexing and international visibility, with multiple formats available in physical and online versions. These platforms play a pivotal role in advancing research quality, enhancing Research Visibility and Research Impact, and guiding researchers toward scientific growth and recognition.

Special thanks to:

(Elsevier, Science Direct, Springer, Springer Nature, Wiley, Taylor & Francis, Nature Publishing Group (Nature journals), Oxford University Press, Cambridge University Press, SAGE Publications, CRC Press, Pearson Education, McGraw Hill, Cengage, Wolters Kluwer, IEEE Standards Association, Institute of Electrical and Electronics Engineers (IEEE), Association for Computing Machinery, American Chemical Society (ACS), Royal Society of Chemistry (RSC), Society for Industrial and Applied Mathematics (SIAM), American National Standards Institute, American Society of Mechanical Engineers, American Society of Civil Engineers, ASTM International, NFPA, Brazilian National Standards Organization, SAGE Journals, ProQuest, JSTOR, Emerald, Scholastic, Macmillan Learning, Hodder & Stoughton, MDPI, PLOS (Public Library of Science), Cambridge Scholars Publishing, Google Scholar, Scopus (Elsevier), Web of Science (Clarivate), DOAJ, arXiv, bioRxiv, medRxiv, EBSCOHost)

Powered by IS Indexing Software © All Rights Reserved.