www.isi.ac

ISI Journals

(International Scientific Indexing)

(Institute for Scientific Information)

A Hybrid Forecasting Method for Anticipating Stock Market Trends via a Soft- Thresholding De-noise Model and Support Vector Machine (SVM)

Open PDF in Browser
World Basic and Applied Sciences Journal, 2023

Autour(s)

  • Lixuan Zhang, Chang Li, Lee Chen, Don Chen, Zheng Xiang, Bing Pan

Abstract

Stock market time series are inherently noisy. Although support vector machine has the noise-tolerant property, the noised data still affect the accuracy of classification. Compared with other studies only classify the movements of stock market into up-trend and down-trend which does not concern the noised data, this study uses wavelet soft-threshold de-noising model to classify the noised data into stochastic trend. In the experiment, we remove the stochastic trend data from the SSE Composite Index and get de-noised training data for SVM. Then we use the de-noised data to train SVM and to forecast the testing data. The hit ratio is 60.12%. Comparing with 54.25% hit ratio that is forecasted by noisy training data SVM, we enhance the forecasting performance.

About ISI Journals:

www.isi.ac is a comprehensive and advanced platform for researchers and scientific authors, providing access to thousands of reputable ISI Journals and precise citation data. The platform enables professional analysis of key metrics such as Impact Factor, H-index, Journal Ranking, and Citation Analysis, supporting the evaluation of Research Impact and Research Visibility. With Journal Citation Reports and other Scholarly Metrics, it guides users in journal selection, optimizing publication strategies, and informed research decisions. The Publishing & Submission process includes Peer Review, adherence to Author Guidelines, Manuscript Preparation, and Publication Timeline tracking, with flexible Open Access and Close Access options. Standards of Research Quality & Ethics, including Plagiarism Check, Editorial Board oversight, Research Methodology, and Literature Review support, along with Digital Object Identifier (DOI) assignment, ensure high-quality, traceable publications. Researchers can maximize their scientific impact through Research Citation management, Research Collaboration, and Research Funding opportunities. By publishing in journals affiliated with www.isi.ac and its parallel platform www.isi.report, authors gain higher chances of Indexing and international visibility, with multiple formats available in physical and online versions. These platforms play a pivotal role in advancing research quality, enhancing Research Visibility and Research Impact, and guiding researchers toward scientific growth and recognition.

Special thanks to:

(Elsevier, Science Direct, Springer, Springer Nature, Wiley, Taylor & Francis, Nature Publishing Group (Nature journals), Oxford University Press, Cambridge University Press, SAGE Publications, CRC Press, Pearson Education, McGraw Hill, Cengage, Wolters Kluwer, IEEE Standards Association, Institute of Electrical and Electronics Engineers (IEEE), Association for Computing Machinery, American Chemical Society (ACS), Royal Society of Chemistry (RSC), Society for Industrial and Applied Mathematics (SIAM), American National Standards Institute, American Society of Mechanical Engineers, American Society of Civil Engineers, ASTM International, NFPA, Brazilian National Standards Organization, SAGE Journals, ProQuest, JSTOR, Emerald, Scholastic, Macmillan Learning, Hodder & Stoughton, MDPI, PLOS (Public Library of Science), Cambridge Scholars Publishing, Google Scholar, Scopus (Elsevier), Web of Science (Clarivate), DOAJ, arXiv, bioRxiv, medRxiv, EBSCOHost)

Powered by IS Indexing Software © All Rights Reserved.